metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Acetylacetone isonicotinoylhvdrazonato- $\kappa^3 O.N'.O'$)dioxidovanadate(V) monohydrate

Hon Wee Wong, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 July 2010; accepted 20 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.121; data-to-parameter ratio = 12.9.

The hydrazone anion in the title compound, $[V(C_{11}H_{12}N_3O_2)O_2]$ ·H₂O, is zwitterionic as its pyridyl N atom is protonated; the O, N and O' atoms span the axialequatorial-axial positions of the trigonal-bipyramidal coordination polyhedron of the metal atom. All non-H atoms lie on a crystallographic mirror plane apart from the oxide ligands, which are related by mirror symmetry. The pyridinium N atom acts as a hydrogen-bond donor to the solvent water molecule, which is in turn a hydrogen-bond donor to the both oxide ligands. These hydrogen-bonding interactions give rise to a three-dimensional network motif.

Related literature

For related vanadium(V) structures, see: Shao et al. (1988). The reaction of oxidovanadium(IV) bis(acetylacetonate), VO(acac)₂, with aroylhydrazines in methanol yields Schiffbase complexes having the dinuclear $[V(=O)(\mu - OMe)_2$ -V(=O)]⁴⁺ core, see: Sarkari & Pal (2009).

Experimental

Crystal data

 $[V(C_{11}H_{12}N_{3}O_{2})O_{2}]\cdot H_{2}O$ $M_r = 319.19$ Orthorhombic, Pnma a = 13.9848 (10) Åb = 6.6630 (4) Å c = 13.8904 (10) Å

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.770, T_{\max} = 0.858$

Refinement

_ . .

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.121$	independent and constrained
S = 1.11	refinement
1610 reflections	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
125 parameters	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
2 restraints	

V = 1294.32 (15) Å³

 $0.35 \times 0.20 \times 0.20$ mm

11995 measured reflections

1610 independent reflections

1416 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.79 \text{ mm}^{-1}$

Z = 4

T = 100 K

 $R_{\rm int}=0.033$

ļ	able 1				
ł	Hydrogen-bond	geometry	(Å,	°)	١.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1w \cdots O1$	0.84(1)	1.91 (1)	2.732(2)	168 (3)
$N3 - H3 \cdots O1w^{i}$	0.86 (1)	1.87 (3)	2.683 (4)	158 (6)
Symmetry code: (i) -r	$+\frac{3}{2}$ -v 7 + $\frac{1}{2}$			

: (i) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2049).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sarkari, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807-3812.

Shao, M.-C., Zhang, Y.-J., Zhang, Z.-Y. & Tang, Y.-Q. (1988). Sci. Chin. Ser. B (Engl. Ed.), 31, 781-788.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, m1020 [doi:10.1107/S1600536810028886]

(Acetylacetone isonicotinoylhydrazonato- $\kappa^3 O, N', O'$)dioxidovanadate(V) monohydrate

H. W. Wong, K. M. Lo and S. W. Ng

Comment

The reaction of oxovanadium(IV) bis(acetylacetonate), VO(acac)₂, with aroylhydrazines in acetonitrile yields vanadium(V) compounds of the formulation V₂O₃L₂ (where L represents the doubly-deprotonated Schiff base). In methanol, the reaction yields Schiff-base complexes having the dinuclear $[V(=O)(\mu-OMe)_2V(=O)]^{4+}$ core (Sarkari & Pal, 2009). In the present study, the reaction with isonicotinic acid hydrazide yields the expected vanadium(V) complex of the mono-deprotonated Schiff base as a negatively-charged zwitterion as the pyridyl N-atom is protonated (Scheme I). The metal atom shows trigonal bipyramidal coordination, with the *O*,*N*,*O*'-atoms of the Schiff base spanning the axial sites (Fig. 1).

All non-hydrogen atoms lie on a crystallographic mirror plane other than the oxo ligands, which are related by mirror symmetry. The pyridinium N atom acts as a hydrogen-bond donor to the solvate water molecule, which is in turn a hydrogen bond donor to the both oxo ligands. Hydrogen bonding gives rise to a three-dimensional network motif.

Experimental

Bis(acetylacetonato)oxovanadium(IV) (0.13 g, 0.5 mmol) and isonicotinic acid hydrazide (0.07 g, 0.75 mmol) heated in methanol (50 ml) for one hour. The brown solution was filtered; slow evaporation of the filtrate afforded brown crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methyl carbons lies on a mirror plane, so that one of the H atoms lies on the plane whereas the other lies on a general position.

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of VO₂($C_{11}H_{12}N_3O_2$) H₂O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry transformation: i = x, 1/2 - y, z.

(Acetylacetone isonicotinoylhydrazonato- $\kappa^3 O, N^{!}, O^{!}$)dioxidovanadate(V) monohydrate

F(000) = 656

 $\theta=2.9{-}27.6^\circ$

 $\mu = 0.79 \text{ mm}^{-1}$

Prism, brown

 $0.35 \times 0.20 \times 0.20 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.638 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3731 reflections

Crystal data

 $[V(C_{11}H_{12}N_{3}O_{2})O_{2}] \cdot H_{2}O$ $M_{r} = 319.19$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 13.9848 (10) Å b = 6.6630 (4) Å c = 13.8904 (10) Å $V = 1294.32 (15) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX diffractometer	1610 independent reflections
Radiation source: fine-focus sealed tube	1416 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.033$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 18$
$T_{\min} = 0.770, \ T_{\max} = 0.858$	$k = -8 \rightarrow 8$
11995 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.121$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0616P)^{2} + 2.2562P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1610 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
125 parameters	$\Delta \rho_{max} = 0.75 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.72 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
V1	0.41194 (4)	0.2500	0.31526 (4)	0.01205 (19)	
01	0.41890 (11)	0.0504 (3)	0.24747 (12)	0.0191 (4)	

O2	0.27403 (16)	0.2500	0.32874 (16)	0.0204 (5)	
O3	0.54634 (16)	0.2500	0.35590 (16)	0.0189 (5)	
O1W	0.47876 (17)	-0.2500	0.12798 (18)	0.0194 (5)	
H1W	0.467 (2)	-0.148 (3)	0.161 (2)	0.040 (10)*	
N1	0.40746 (18)	0.2500	0.46744 (19)	0.0138 (5)	
N2	0.49679 (19)	0.2500	0.51358 (19)	0.0139 (5)	
N3	0.84943 (19)	0.2500	0.5420 (2)	0.0155 (5)	
Н3	0.9099 (11)	0.2500	0.554 (4)	0.059 (18)*	
C1	0.1102 (2)	0.2500	0.3685 (3)	0.0218 (7)	
H1A	0.1065	0.2500	0.2981	0.033*	
H1B	0.0784	0.3701	0.3937	0.033*	0.50
H1C	0.0784	0.1299	0.3937	0.033*	0.50
C2	0.2135 (2)	0.2500	0.3993 (2)	0.0163 (6)	
C3	0.2387 (2)	0.2500	0.4946 (2)	0.0165 (6)	
H3A	0.1889	0.2500	0.5412	0.020*	
C4	0.3340 (2)	0.2500	0.5277 (2)	0.0137 (6)	
C5	0.3508 (2)	0.2500	0.6351 (2)	0.0198 (7)	
H5A	0.4197	0.2500	0.6480	0.030*	
H5B	0.3218	0.1299	0.6635	0.030*	0.50
H5C	0.3218	0.3701	0.6635	0.030*	0.50
C6	0.5624 (2)	0.2500	0.4488 (2)	0.0140 (6)	
C7	0.6634 (2)	0.2500	0.4810(2)	0.0133 (6)	
C8	0.7378 (2)	0.2500	0.4146 (2)	0.0156 (6)	
H8	0.7246	0.2500	0.3475	0.019*	
C9	0.8314 (2)	0.2500	0.4473 (2)	0.0165 (6)	
H9	0.8828	0.2500	0.4025	0.020*	
C10	0.7787 (2)	0.2500	0.6080 (2)	0.0166 (6)	
H10	0.7941	0.2500	0.6746	0.020*	
C11	0.6845 (2)	0.2500	0.5800 (2)	0.0153 (6)	
H11	0.6347	0.2500	0.6265	0.018*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0111 (3)	0.0163 (3)	0.0087 (3)	0.000	0.00041 (18)	0.000
O1	0.0180 (8)	0.0203 (8)	0.0192 (8)	0.0007 (6)	-0.0002 (6)	-0.0048 (7)
O2	0.0131 (11)	0.0351 (14)	0.0129 (11)	0.000	-0.0001 (9)	0.000
O3	0.0127 (11)	0.0333 (14)	0.0108 (11)	0.000	-0.0004 (8)	0.000
O1W	0.0188 (12)	0.0193 (12)	0.0201 (12)	0.000	0.0066 (10)	0.000
N1	0.0109 (12)	0.0183 (13)	0.0121 (13)	0.000	-0.0012 (9)	0.000
N2	0.0121 (12)	0.0171 (12)	0.0124 (12)	0.000	-0.0019 (10)	0.000
N3	0.0126 (12)	0.0192 (13)	0.0146 (13)	0.000	-0.0021 (10)	0.000
C1	0.0122 (15)	0.035 (2)	0.0187 (16)	0.000	-0.0006 (13)	0.000
C2	0.0128 (14)	0.0195 (15)	0.0165 (16)	0.000	0.0011 (12)	0.000
C3	0.0144 (15)	0.0194 (15)	0.0158 (15)	0.000	0.0010 (12)	0.000
C4	0.0154 (15)	0.0141 (14)	0.0115 (14)	0.000	0.0005 (11)	0.000
C5	0.0178 (15)	0.0314 (19)	0.0102 (15)	0.000	0.0025 (12)	0.000
C6	0.0143 (14)	0.0150 (14)	0.0126 (14)	0.000	-0.0013 (12)	0.000

supplementary materials

67	0.01.40 (1.4)	0.0101 (1.0)	0.0100 (1.4)	0.000	0.001((11)	0.000
C7	0.0140 (14)	0.0131 (14)	0.0128 (14)	0.000	-0.0016 (11)	0.000
C8	0.0170 (15)	0.0180 (15)	0.0117 (14)	0.000	-0.0009 (12)	0.000
C9	0.0154 (15)	0.0195 (15)	0.0145 (15)	0.000	0.0010 (12)	0.000
C10	0.0185 (15)	0.0191 (15)	0.0123 (15)	0.000	-0.0015 (12)	0.000
C11	0.0156 (15)	0.0181 (15)	0.0122 (14)	0.000	0.0021 (12)	0.000
Geometric param	neters (Å, °)					
V1-01		1.6323 (17)	C1-	-H1C	0.98	00
$V1 - 01^{i}$		1.6323 (17)	C2—	-C3	1.36	9 (5)
V1-02		1 938 (2)	C3—	-C4	1 41	1 (4)
V1-02		1.950 (2)	C3—	-H3A	0.95	00
V1		2,115 (3)	C4—	-C5	1 51	0(4)
02-C2		1 295 (4)	C5-	-H5A	0.98	00
03—C6		1.310 (4)	C5—	-H5B	0.98	00
O1W—H1W		0.838 (10)	C5—	-H5C	0.98	00
N1—C4		1.325 (4)	C6—	-C7	1.48	1 (4)
N1—N2		1.404 (4)	C7—	-C8	1.39	1 (4)
N2—C6		1.286 (4)	C7—	-C11	1.40	7 (4)
N3—C9		1.340 (4)	C8—	-C9	1.38	5 (4)
N3—C10		1.349 (4)	C8—	-H8	0.95	00
N3—H3		0.861 (10)	С9—	-H9	0.95	00
C1—C2		1.507 (4)	C10-	C11	1.37	3 (5)
C1—H1A		0.9800	C10-	—H10	0.95	00
C1—H1B		0.9800	C11-	—H11	0.95	00
01—V1—01 ⁱ		109.11 (13)	C2—	-C3—H3A	118.	1
O1—V1—O2		96.61 (7)	C4—	-C3—H3A	118.	1
01 ⁱ —V1—O2		96.61 (7)	N1—	-C4—C3	121.	8 (3)
O1—V1—O3		96.25 (7)	N1—	-C4—C5	120.	3 (3)
01 ⁱ —V1—O3		96.25 (7)	С3—	-C4—C5	117.	9 (3)
O2—V1—O3		157.73 (10)	C4—	-C5—H5A	109.	5
01—V1—N1		125.34 (6)	C4—	-C5—H5B	109.	5
01 ⁱ —V1—N1		125.34 (6)	H5A	—С5—Н5В	109.	5
O2—V1—N1		82.75 (10)	C4—	-C5—H5C	109.	5
O3—V1—N1		74.98 (10)	H5A	—С5—Н5С	109.	5
C2—O2—V1		136.3 (2)	H5B	—С5—Н5С	109.	5
C6—O3—V1		116.6 (2)	N2—	-C6—O3	124.	5 (3)
C4—N1—N2		113.6 (3)	N2—	-C6—C7	118.	0 (3)
C4—N1—V1		130.9 (2)	03–	-C6—C7	117.	5 (3)
N2—N1—V1		115.46 (19)	C8—	-C7C11	119.	4 (3)
C6—N2—N1		108.4 (3)	C8—	-C7—C6	120.	9 (3)
C9—N3—C10		122.0 (3)	C11-	—С7—С6	119.	7 (3)
C9—N3—H3		112 (4)	С9—	-C8—C7	119.	3 (3)
C10—N3—H3		126 (4)	С9—	-С8—Н8	120.	3
C2—C1—H1A		109.5	С7—	-С8—Н8	120.3	
C2—C1—H1B		109.5	N3—	-C9C8	120.	0 (3)
H1A—C1—H1B		109.5	N3—	-С9—Н9	120.	0
C2—C1—H1C		109.5	C8—	-С9—Н9	120.	0

109.5	N3—C10—C11	120.7 (3)
109.5	N3—C10—H10	119.7
124.3 (3)	C11-C10-H10	119.7
114.3 (3)	C10—C11—C7	118.6 (3)
121.4 (3)	C10-C11-H11	120.7
123.9 (3)	C7—C11—H11	120.7
124.90 (6)	N2—N1—C4—C3	180.0
-124.90 (6)	V1—N1—C4—C3	0.0
0.0	N2—N1—C4—C5	0.0
0.0	V1—N1—C4—C5	180.0
-124.96 (6)	C2—C3—C4—N1	0.0
124.96 (6)	C2—C3—C4—C5	180.0
0.0	N1—N2—C6—O3	0.0
0.0	N1—N2—C6—C7	180.0
-92.98 (9)	V1	0.0
92.98 (9)	V1—O3—C6—C7	180.0
0.0	N2-C6-C7-C8	180.0
180.0	O3—C6—C7—C8	0.0
87.02 (9)	N2-C6-C7-C11	0.0
-87.02 (9)	O3—C6—C7—C11	180.0
180.0	C11—C7—C8—C9	0.0
0.0	C6—C7—C8—C9	180.0
180.0	C10—N3—C9—C8	0.0
0.0	C7—C8—C9—N3	0.0
0.0	C9—N3—C10—C11	0.0
180.0	N3—C10—C11—C7	0.0
0.0	C8—C7—C11—C10	0.0
180.0	C6—C7—C11—C10	180.0
	109.5 109.5 124.3 (3) 114.3 (3) 121.4 (3) 123.9 (3) 124.90 (6) -124.90 (6) 0.0 0.0 -124.96 (6) 0.0 0.0 -124.96 (6) 0.0 0.0 -92.98 (9) 92.98 (9) 92.98 (9) 0.0 180.0 180.0 18	109.5N3— $C10$ — $C11$ 109.5 N3— $C10$ — $H10$ 124.3 (3) $C11$ — $C10$ — $H10$ 114.3 (3) $C10$ — $C11$ — $H11$ 123.9 (3) $C7$ — $C11$ — $H11$ 123.9 (3) $C7$ — $C11$ — $H11$ 124.90 (6)N2— $N1$ — $C4$ — $C3$ -124.90 (6) $N2$ — $N1$ — $C4$ — $C5$ 0.0 N2— $N1$ — $C4$ — $C5$ 0.0 N1— $N1$ — $C4$ — $C5$ 0.0 N1— $N2$ — $C6$ — $C3$ -124.96 (6) $C2$ — $C3$ — $C4$ — $C5$ 0.0 N1— $N2$ — $C6$ — $C3$ 0.0 N1— $N2$ — $C6$ — $C7$ -92.98 (9)V1— $O3$ — $C6$ — $C7$ 92.98 (9)V1— $O3$ — $C6$ — $C7$ — $C8$ 180.0 $O3$ — $C6$ — $C7$ — $C11$ -87.02 (9) $O3$ — $C6$ — $C7$ — $C11$ -87.02 (9) $O3$ — $C6$ — $C7$ — $C8$ 0.0 $C11$ — $C7$ — $C8$ — $C9$ 0.0 $C10$ — $N3$ — $C9$ — $C8$ 0.0 $C10$ — $N3$ — $C9$ — $C8$ 0.0 $C7$ — $C8$ — $C9$ — $N3$ 0.0 $C9$ — $N3$ — $C10$ — $C11$ 180.0 $N3$ — $C10$ — $C11$ — $C7$ 0.0 $C9$ — $N3$ — $C10$ — $C11$ 180.0 $N3$ — $C10$ — $C11$ — $C7$ 0.0 $C6$ — $C7$ — $C11$ — $C10$

Symmetry codes: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1w…O1	0.84 (1)	1.91 (1)	2.732 (2)	168 (3)
N3—H3···O1w ⁱⁱ	0.86 (1)	1.87 (3)	2.683 (4)	158 (6)
Symmetry codes: (ii) $-x+3/2, -y, z+1/2$.				

Fig. 1

